Journal of Organometallic Chemistry, 308 (1986) 261-262 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE PREPARATION OF THE STERICALLY HINDERED ALCOHOL TRIS(TRIMETHYLSILYL)METHANOL

PAUL D. LICKISS

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BNI 9QJ (Great Britain) (Received January 10th, 1986)

Summary

The alcohol $(Me_3Si)_3COH$, with potential for use in the preparation of sterically hindered metal alkoxides, has been prepared by hydrogen peroxide oxidation of the boronic acid $(Me_3Si)_3CB(OH)_2$.

Introduction

There is much current interest in the chemistry of compounds in which metals bear bulky alkoxide ligands; for example, the tri-t-butylmethoxide group has recently been used to prepare the monomeric germanium alkoxide $Ge(OC'Bu_3)_2$ [1]. Our awareness of the interest of several groups in preparing similar derivatives of the alcohol (Me₃Si)₃COH, and of several unsuccessful attempts to make it, prompted us to devise a method for its synthesis.

Results and Discussion

Treatment of $(Me_3Si)_3CLi$ with B(OMe)₃ gave $(Me_3Si)_3CB(OMe)_2$, this was then partially hydrolysed to a mixture of $(Me_3Si)_3CB(OMe)_2$, $(Me_3Si)_3CB(OH)OMe$ and $(Me_3Si)_3CB(OH)_2$. This mixture was refluxed with a mixture of THF, aqueous H_2O_2 and NaO₂CCH₃, and work up gave a mixture of $(Me_3Si)_3COH$ and $(Me_3Si)_3CH$. The $(Me_3Si)_3COH$ was isolated pure by column chromatography as a low melting solid in 30% yield based on the initial amount of $(Me_3Si)_3CH$ used to prepare the $(Me_3Si)_3CLi$.

Experimental

Preparation of $(Me_3Si)_3COH$. A solution of B(OMe)₃ (26.9 g, 0.26 mol) in Et₂O (50 cm³) was added dropwise to a stirred solution of $(Me_3Si)_3CLi$ (prepared from $(Me_3Si)_3CH$ (20 g, 0.086 mol) and MeLi as described by Aiube and Eaborn [2]) under dry argon at room temperature. After the addition the solution was refluxed

0022-328X/86/\$03.50 © 1986 Elsevier Sequoia S.A.

for 5 h, during which the solution remained red-brown and a white precipitate formed. The mixture was then added cautiously to H_2O (200 cm³), which dissolved most of the solid and caused the organic solution to turn pale yellow. The organic layer was separated, washed with water $(2 \times 50 \text{ cm}^3)$ and dried (MgSO₄). The solvent was removed under reduced pressure to leave a thick oil, which from its ¹H NMR spectrum appeared to be a mixture of (Me₃Si)₃CB(OMe)₂, (Me₃Si)₃-CB(OH)OMe, (Me₃Si)₃CB(OH)₂ and (Me₃Si)₃CH. The oil was dissolved in THF (100 cm³), then 3 M NaO₂CCH₃ (10 cm³) and 100-vol H_2O_2 (11.5 cm³) were added, and the mixture was refluxed for 24 h then cooled to room temperature. The organic layer was separated, washed with water $(2 \times 25 \text{ cm}^3)$, and dried (MgSO₄), and the solvent was removed under reduced pressure to leave an oil, which was a mixture of (Me₃Si)₃COH and (Me₃Si)₃CH. The mixture was separated by column chromatography using silica gel (60-120 mesh) with 1/1 v/v hexane/CH₂Cl₂ as eluent to give (Me₂Si)₂COH (7.5 g; 30%, based on (Me₂Si)₂CH taken), m.p. 35°C, (Found: C, 48.2; H, 10.9. C₁₀H₂₈OSi₃ calcd.: C, 48.3; H, 11.35%); δ(H) (CDCl₃ solution, 360 MHz): 0.11 (s, 27H, SiMe₃) and 0.45 ppm (br.s, 1H, OH) (the resonance at 0.45 ppm disappeared on shaking the solution with D₂O); δ (C) (CDCl₃ solution): 0.31 (Me) and 57.69 ppm (COH). Mass spectrum (EI): m/z 233 (5%, $[M - Me]^+$), 217 (7, $[M - MeO]^+$, 159 (10, $[M - Me_3SiO]^+$), 147 (30, $[Me_3SiOSiMe_2]^+$), 143 (35, $[M - Me_3SiOH-Me]^+$, 133 (25, $[Me_3SiOSiMeH]^+$), 75 (20, $[Me_2SiOH]^+$), 73 (100, $[Me_3Si]^+$).

Acknowledgements

I thank Professor C. Eaborn, Dr. J.D. Smith and Dr. R.R. Ford for helpful discussions and the SERC for support (via Professor C. Eaborn).

References

- 1 T. Fjeldberg, P.B. Hitchcock, M.F. Lappert, S.J. Smith and A.J. Thorne, J. Chem. Soc., Chem. Commun., (1985) 939.
- 2 Z.H. Aiube and C. Eaborn, J. Organomet. Chem., 269 (1984) 217.